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1.0 INTRODUCTION
This paper describes the University of Texas at Austin’s (UT-Austin) design of BlastasauRAS for the 18th
annual Intelligent Ground Vehicle Competition (IGVC). This vehicle is a redesigned version of UT-Austin's
2009 robot, the RASmanian Devil. At the end of last year's competition, our team did a thorough
evaluation of the things that RASmanian Devil did and didn't do well. The mechanical chassis and
electrical system both exhibited a high degree of robustness throughout the entire competition, despite
the pouring rain and muddy field, not causing any issues throughout the entire weekend. On the other
hand, our custom software platform worked to an extent, but was not flexible or versatile enough for our
needs. This year's IGVC team formulated a plan to use RASmanian Devil as a starting point to build
BlastasauRAS. This year's software architecture is completely new and a lot of the electrical system is
brand new, but we chose to stick with the same robust mechanical system as last year. BlastasauRAS
was built by voluntary student members as a robotic platform with portable software and integrated
commercial off-the-shelf (COTS) hardware to compete in the three competitive events at IGVC.

2.0 DESIGN PLANNING PROCESS
The process of designing a robotics system involves a careful balance of trade-offs with complexity and
hardware. Our team set many deadlines and deliverables to schedule time for testing and re-evaluation.
We set a timeline to achieve hardware, portable software drivers, functional electronics and sensor
integration. After multiple progress reviews of the design at set time periods, we made appropriate
modifications based on available monetary resources and testing time.

2.1 Sub-Teams
The team divided into mechanical, electrical and software section sub-teams. The mechanical group
focused on drive dynamics and manufacturing simplicity. The electrical group focused on power
management and interconnection between all electrical systems. The software team integrated together
sensor data for path planning and navigation.

2.2 Design Sequence
Our design sequence begins with high level block diagram of sensors, electronics, software and
mechanical ideas. Many design decisions involved choosing commercially-off-the-shelf (COTS) hardware
to achieve a layer of abstraction from low level devices. After establishing a sufficient roadmap of the
various sub-systems, the sequence begins an iterative loop of evaluating an integrated sub-section and
redesigning when necessary.
Our approach differs from a more traditional planning which requires more simulation and analysis of
each decision. Our organizational structure and time budget required us to accelerate the analysis
phase. To demonstrate proof-of-concept, we create a series of rapid prototypes to eventually achieve a
functional design to utilize in our final system. Our quick design strategy allows us to have a working
robot throughout many design stages. A functional prototype improved our time in the overall system
evaluation.



Figure 1: Process Flowchart

The UT-Austin team is composed of voluntary members of the IEEE Robotics & Automation Society
called “RAS” in abbreviation. There are eight undergraduates participating in the contest. Overall work
hours were approximated into the following breakdown below:

Student’s Name
Academic

Background
Level of

Education Focus of Contribution Extent of
Contribution

Richard McClellan Mechanical Engr. 5th Year Team Lead 250Hrs.
Nicu Stiurca Computer Science 3rd Year Software 300Hrs.
Josh James Electrical Engr. 1st Year Software 250Hrs.
Alex Böhm Mechanical Engr. 3rd Year Mechanical 50 Hrs.

Erica Taylor Mechanical Engr. 3rd Year Mechanical/
Report 50 Hrs.

Charlie Manion Mechanical Engr. 2nd Year Mechanical 20 Hrs.
Kyle Miller Electrical Engr. 4th Year JAUS 50 Hrs.
Emily Chen Biomedical Engr. 4th Year JAUS 20 Hrs.

Table 1: Work Division Breakdown

3.0 ELECTRICAL SYSTEM
BlastasauRAS’s electrical system can be broken up into four major systems: power, control, sensor, and
communication systems. Each system is closely tied to the others so that we can have full control over
how our robot performs.

3.1 Power System
Power management is a crucial element for a successful robot, and definitely not something that we want
to fail at competition. BlastasauRAS is powered by single 12 V 17Ah lead acid battery, which has the
advantage over Lithium batteries of being able to provide several hundred amps of current when needed.
We have learned from past competitions that without some sort of surge protection or isolation between
the control computer and the high current drive motors, the voltage to the controller can drop during
current spikes and result in a reboot. We have solved this issue on several robots by simply using two
batteries - one for the drive system and one for the controller. However, this is an inconvenience solution
because we had to worry about charging two batteries. Last year, our controller was a small picoITX VIA
C7 1GHz motherboard, which we were able to to power this controller as well as all the sensors using a
125W picoPSU power with built-in protection for high-current surges. This year, we made the decision to
get more processing power by using a 700W desktop computer. While this has been a great asset from a



software perspective, it has been a difficult challenge from the power side. We ended up using a 1.5KW
power inverter with built-in UPS, so that if the supply from the primary robot battery drops out, the
controller remains on. The UPS provides power for the on board computer, the laser rangefinder, digital
compass, GPS, and other sensors. This actually provides a significant advantage over last year in that
we can hot-swap robot batteries without shutting down our main control computer. Figure 2 shows our
power system block diagram.

Figure 2: BlastasauRAS power diagram. Ground connections not shown.

The batteries directly power the motor controller and the power inverter. When the control system power
switch is closed, the power inverter powers the on-board computer . All the robot's sensors draw their
power from the on-board computer. The safety benefits of the three switches in the power system will
further be discussed in section 7.0, Safety. We are using two Jaguar motor controllers to control our four
DC drive motors.



Overall our power system is very simple. In earlier years we have had very complicated wiring, multiple
separate battery sources, and many extra and unnecessary power switches. Having such a complicated
power system lead to failures in our previous robots that prevented the robots from operating correctly,
even before the code could be tested and debugged. Last year, we decided to simplify the power
system, hoping to improve the reliability of our robot's power system. Due to the success of last year's
power system, we uphold the same design principles in the current year, which will also improve our
overall robot's success.

3.2 Controller
Last year's IGVC robot used VIA C7 1GHz processor. While lightweight and compact, our ultimate failure
in competition was due to the fact that this controller was not powerful enough to keep up with the
incoming sensor data from our USB webcam, and process everything. This year we have taken an
opposite approach and are using a 2.2GHz Intel Xeon quad-core based desktop with 1GB of RAM. We
use the 30GB solid state SATA drive from last year which is much more robust than a conventional hard
drive as it is not subject to mechanical failure. This drastic processing horsepower upgrade is further
justified in section 5.3, Performance Analysis.

Two Texas Instruments MDL-BDC24 Black Jaguar motor controllers are used for controlling the motors
and reading the encoders [6]. The motor controllers are pre-programmed with velocity control capabilities
and they can report wheel position thanks to the encoders. One of the motor controllers is connected to
the desktop via the RS232 port on the motor controller/serial port on the desktop motherboard. The
second motor controller is interconnected with the first via the CAN interface. In this configuration, the first
motor controller relays messages to/from the second across the RS232 interface back to the
motherboard. Commuciation with the microcontroller is handled according to the TI Jaguar
communication spec.

Figure 3: Black Jaguar



3.3 Wireless Communication
To make our system easier to develop from remote workstations, and eliminate the need for a keyboard,
mouse, and monitor connected to the robot, we wanted to have wireless communication. Initially, an
EDIMAX EW-7711UAn Wireless USB Adapter was used to connect the desktop computer to a Linksys
WRT54G router so that we could remotely connect to the robot from another computer connected to the
same router. This solution worked, but was not ideal because the Wireless Adapter had a very limited
range and when it disconnected from the router, it would not automatically reconnect. This required
hooking up a monitor, mouse, and keyboard to the robot every time we needed to reconnect to the
wireless network. To fix this issue, the robot now utilizes a Linksys WGA600N Wireless Gaming Adapter,
connected directly to the computer's ethernet port. The gaming adapter is setup to automatically connect
to the main router, and also provides a much greater range for the robot to travel which is very helpful.

3.4 Sensors
Choosing the right sensors was key to making a system that worked well as a whole. Significant effort
was spent examining each datasheet of each sensor before its purchase to ensure that it would work the
way we desired.

3.4.1 Laser Rangefinder
Last year our team chose to use a Hokuyo UHG-08LX scanning laser rangefinder for its 8m range, and
relatively low price tag compared to the more common SICK rangefinders. We definitely had success
with the rangefinder With 1mm trace resolution, a 270 degree field of view, 0.36 degree angular
resolution, and 15Hz scan rate, it was determined to be suitable for obstacle avoidance in this competition
[5].

3.4.2 Camera
Line detection is done with a 2MP Logitech Quickcam Pro 9000, capable of up to 1600x1200 pixels and
up to 30 frames per second. It also features an autofocus system which eliminates all manual tuning,
which was one issue we had in previous years [4].

Figure 4: Logitech Quickcam Pro 9000
3.4.3 Quadrature Encoders
Our instantaneous localization algorithm is done using odometry, which integrates values from two
quadrature encoders (Grayhill 63R256), which are directly coupled to the left and right wheel shafts. The
casing of the encoder is completed enclosed allowing it to work in any lighting without calibration, and



also increasing durability. By looking at both the rising and falling edges of each signal, we can obtain
512 increments per revolution. With 16in diameter wheels, movement of the robot is measured with
2.5mm resolution [3].

3.4.4 Digital Compass
BlastasauRAS uses an OS5000-S Compass Module with Tilt Compensation which consists of a 3-axis
magnetometer and a 3-axis accelerometer to accurately measure its heading angle. It features 24 bit A/D
conversion on board, and an easy to use RS-232 communication interface, which allows us to easily
connect it to the robot's computer. The compass provides data at rate of 75 Hz with a nominal heading
accuracy of 0.5 degrees and a resolution of 0.1 degrees [2].

3.4.5 GPS
We have tested two different GPS receivers on the robot. Eventually we decided on the Garmin 72 GPS,
which gives WAAS capability and a 3 meter accuracy [1]. We communicate with the GPS using a RS-232
serial link. The GPS has handheld features such as embedded button controls allowing the user to view
all information on the GPS for quick debugging.

4.0 MECHANICAL SYSTEM
After competing in IGVC in 2009, our team was very proud of the reliability and robustness of our
mechanical design and made the decision that it would be best to stick with what worked. Having a two
wheel drive system with a caster helped minimize resistance to turning, thus making it easy to control and
maneuver around obstacles. The one issue with last year's robot was that we did not have a very linear
response from the Victor motor controllers that we were using, so this year we decided to use some more
advanced Jaguar speed controllers which was discussed in Section 3.
Since the motors were much faster than we wanted the wheels to spin, gearboxes were required. We
chose to use the gearboxes out of a Dewalt drill for their reliability, and coupled them with some 2.5” CIM
motors, which we had available from a previous competition. Two Dewalt/CIM assemblies were made for
each side, and were linked to the main driveshaft using sprocket and chain. Our motors free spin at 5310
rpm with 343 oz-in torque. This is reduced by 60:1 via the 12:1 gearbox and the 5:1 sprocket reduction.
With two 16” driven trailer tires, we should move approximately 4.3 mph with a pushing force forward of
400 lbs. With these specifications we will meet the max speed limit of the vehicle with an ample amount
of torque for climbing the fifteen percent grade ramp. In addition to the torque, the two 16” wheels have
high traction to make the climb on the ramp easier.
The electronics mounting system was created to keep the center of gravity relatively low. As a result, the
payload, speed controllers, breaker panel, microcontroller, and scanning laser range inders all had to be
mounted relatively close to the bottom of the chassis to keep it from tipping over. The laptop was also
mounted above the payload to allow for easy access while testing the system. From the base of the
robot, two vertical aluminum square extrusions were mounted. The IMU, Camera, and GPS had to be
mounted high for optimum sensor performance, so we put a tower above the two front drive wheels for
the mounting of these three components.



Figure 5: Solidworks System Level Model

Figure 6: Solidworks Drivetrain System



5.0 SOFTWARE
Software is by far the area that has been most improved over last year's IGVC robot. Last year, we built
the main software architecture around the OpenGL Utility Toolkit, or GLUT. This API was chosen
because it fuses computer industry standard OpenGL with a mature, flexible, and simple framework for
designing event-driven programs. However, this choice in architecture resulted in enormous amounts of
time being spent on writing hardware drivers for all of our sensor drivers and custom development of a
multi-threaded system, which ended up being very convoluted and difficult to modify. This year we made
the decision to use an already existing software platform, Player/Stage. Player/Stage is an open source,
language independent robotics platform, available for download by anyone through their website. It has
been developed over the last decade by multiple contributors from the Stanford AI Lab, and the University
of Southern California Robotics Research Lab. It also provides support for a lot of the hardware that we
already had including our laser rangefinder and digital compass. It can also be programmed in several
different languages including C++, Python, or Java. Lastly, it has the ability to create a simulated robot in
a simulated environment, which has been very helpful for the development to develop while the
mechanical team makes modifications to the robot.

5.1 Navigation and Obstacle Avoidance
Since the map of the course and placement of obstacles is not available ahead of time, it is impossible for
the robot to plan its path from start to goal. Taking advantage of the fact that the road does not fork, the
robot's goal is simply "go forward". As the robot advances through the course and obstacles are
discovered and marked on the occupancy grid, the navigation code uses a simple bugging algorithm to
circumvent cells that are impassable. For the navigation challenge, keeping track of which way is
"forward" can be tricky as the road turns or if the robot is forced to backtrack after encountering a dead
end because of obstacle placement. The main heuristic for determining which way is "forward" is to
remember the traversed path and to avoid going towards regions that have already been explored. In the
aforementioned case when the robot is forced to backtrack even as the heuristic "forward" into the dead
end, the backtracking marks the path to the dead end as having been explored a second time, so the
robot becomes more reluctant to fall into the same trap again since it avoids paths it has already taken.
Eventually after sufficient backtracking, the robot comes to a point where it can go forward again without
being forced into the dead end a second time, so it gets back on track towards the goal by exploring new
regions of the course.

5.2 Vision
The vision algorithm uses an open source computer vision library developed by Intel called OpenCV
(Open Computer Vision). The OpenCV process is for acquiring and processing the image from the
webcam. We used C++ and the OpenCV library to process the image and extract information about
hazards. We tried to remove as many user defined parameters as possible and eliminate false positives
due to noise while at the same time keeping our algorithm as robust as possible.

The vision algorithm first gets the raw image from the camera and rescales the image size to 320x240
pixels. This resolution was empirically chosen because the processing time and information losses were
deemed acceptable. The algorithm also converts the image to grayscale for computational efficiency (3
color channels are more difficult to work with, and they don't add much value).

Next, the obstacle extraction algorithm then converts the occupancy grid into robot centric coordinates
using an inverse perspective transformation. This transformation allows us to represent the detected
hazards in a robot centric frame of reference, which is of more value for control purposes than a camera
centric frame of reference. By robot centric coordinates, we mean a top-down, bird's eye view of the
robot.



The last preprocessing step is to smooth the image with a Gaussian kernel in order to filter out noise,
primarily in the form of textured grass. The robot need not identify edges between blades/patches of
grass as they do not pose a hazard to the robot.

Finally, the key to our hazard detection is the OpenCV implementation of the Canny edge detection
algorithm to find boundaries between areas of the image. These boundaries correspond to white lines
painted on the grass and the edges of barrels (and other obstacles). Therefore, we can treat the output of
the Canny edge detection as an occupancy grid wherein edges (denoted by white pixels) are deemed
impassable.

Shown below in Figure 7 is a sample video frame in each of the four main processing stages. The
(roughly) V shaped outside edges are an artifact of the perspective transform which could be easily
removed, but we keep them there as a deterrent to the obstacle avoidance algorithm against planning
movements outside of the robot's current field of view since it is safer to assume there are hazards in the
robot's blind spots.

Figure 7: Vision Processing Stages

5.3 Performance Analysis
Last year, the RASmanian Devil's 1GHz CPU was overwhelmed by the flood of sensory data, and we
were trying to do too much with it. The two main pitfalls were trying to map the entire course
and not having enough processing power for real-time vision processing. We address both
of these issues in this year's design.

Last year, we attempted to implement a SLAM (Simultaneous Localization And Mapping)
algorithm so that our path planner can plan around obstacles. This proved to be very



expensive computationally, and we scrapped the idea this year as unnecessary. Instead of
trying to achieve optimal global navigation by mapping the course, we simply do local
obstacle avoidance based primarily on lidar scans while relying on dead-reckoning for global
navigation. This is a reasonable approach since optimal global navigation is impossible
anyway without knowing the full map a priori, and building a full map of the course doesn't
help since by the time the robot has seen (mapped) all of course, the robot has finished the
course and no longer needs the map.

Last year, the vision processing loop could only process one video frame ever one or two
seconds. That means that by the time the RASmadian Devil detected that it was
approaching a white lane boundary line, up to two seconds had elapsed since the image was
acquired. Clearly, this accounted for the Devil's difficulty staying within bounds. This year,
the BlastasauRAS's quad core Xeon processor can process 15 frames per second by running
the vision processing loop on a dedicated core. This is the same as the lidar's scanning rate
and equates to a response time of 67 ms. A second core can be used to take advantage of
the webcam's maximum 30 fps while leaving the remaining two cores free to acquire and
process other sensory inputs (eg, lidar, compass, GPS) and to navigate. Clearly,
BlastasauRAS is much better equipped than the RASmadian Devil to acquire and process (in
real time) the large amounts sensory data.

5.4 JAUS
In order to participate in the JAUS challenge, the JAUS protocol was implemented using Jr Middleware
3.0, a SAE AS-4 (JAUS) AS-5669 compliant software toolset. This open source solution includes a Run-
Time Engine which runs on the on-board computer and manages and routes message traffic between the
robot and a base station. This Run-Time Engine receives JAUS formatted UDP packets on the incoming
network port, then parses and stores the data. A higher level interface periodically polls the Run-Time
Engine to see if any JAUS data requests have occurred. Responses to the data requests are handled
through the higher level interface, which returns requested data to the Run-Time Engine, which
subsequently sends the data to the base station.

6.0 PREDICTIONS
Our low-cost drive train and configurable electronics will provide a reasonable opportunity for success at
the 2010 competition. The motors and gear box in this drive train allow a maximum speed of just under 5
MPH. However, as the robot was designed for outdoor use, we predict that we should be able to carry
the payload up 15% grades with no problem. We predict that the 12V lead acid battery will provide six to
eight hours of battery life.
Our camera can see objects in excess of 20 feet depending on the ambient brightness and the contrast,
while our lidars have a maximum range of 8 meters. Our GPS has a best accuracy of 2 meters, but in
practice on a clear day, far from buildings, we achieve an accuracy of 3-5 meters. Our waypoint
navigation is bounded by our GPS navigation.

7.0 SAFETY
Safety has been a primary concern in many decisions throughout the design process of the robot.
Human interaction with the robot is the main focus of robot safety. A testing operator will be present with
an electrical safety stop (E-stop) whenever the robot is in operation. This hardware E-Stop is located
directly after the batteries, see figure #2. It is meant to cut power to every system of the robot in the event
of a serious problem or emergency. A less extreme option for disabling the robot is in our remote kill-
switch. The remote kill-switch is wired so that it only cuts power to the motor controllers, disabling the
robot's movement. This allows the user to disable the robot's motors while keeping the control system



running, which is very useful for testing and debugging. In addition to the hardware E-stop and the
remote kill-switch, we designed the software to immediately stop robot operation if our testing
communication link is lost. In the early construction phase, we incorporated safety rules such as
eliminating sharp edges, adding bumpers and covering exposed wires. All the high-current power wires
use Anderson PowerPole connectors to avoid short circuiting batteries. In general, the robot has been
designed for human interaction to ensure public safety around the BlastasauRAS.

8.0 COST
Quantity Part Retail Price Our Price

1 Dell Precision 530 Desktop Computer $350 $0
1 1500W 12VDC to 120VAC Power Inverter $95 $95
1 OS5000-S Digital Compass $270 $270
1 Logitech QuickCam Pro 9000 $90 $90
1 Garmin GPS 72 Unit $110 $110
1 Hokuyo UHG-08LX Laser Rangefinder $3950 $0
2 GrayHill 63R Encoders $60 $60
2 TI BDC-MDL24 Black Jaguar Motor Controller $220 $0
1 Linksys WGA600N Wireless Gaming Adapter $80 $80
1 Linksys WRT54G Wireless Router $70 $70
4 CIM Motors $120 $120
4 Dewalt Hand Drills (for gearboxes) $220 $220
2 16” Trailer Tires $70 $70
1 Aluminum for frame $200 $200
1 Sprockets and Chain $100 $100

Total $5,515 $1,485
Table 2: System Level Budget

9.0 CONCLUSION
BlastasauRAS is a culmination of effort of the RAS team from the University of Texas at Austin. As a
fourth year team into the competition, our contributions to software infrastructure and low-cost electronic
design are quite portable. In addition, our versatility and flexibility in software design and robust
mechanical platform will be a defining aspect of our presence at the IGVC competition.
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